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The Finite Element Method With Lagrange 
Multipliers for Domains With Corners* 

By Juhani Pitkiiranta 

Abstract. We study the convergence of the finite element method with Lagrange multipliers 
for approximately solving the Dirichlet problem for a second-order elliptic equation in a 
plane domain with piecewise smooth boundary. Assuming mesh refinements around the 
corners, we construct families of boundary subspaces that are compatible with triangular 
Lagrange elements in the interior, and we carry out the error analysis of the resulting 
approximations in weighted Sobolev spaces. 

1. Introduction. We consider the model problem 

(1.1) ~~~-/vu = f in Q, 

u=g onag, 

where Q c R2 is a bounded domain with piecewise smooth boundary au, and f 
and g are given functions defined on U. Under sufficient regularity hypotheses onf 
and g, problem (1.1) admits the following weak formulation: Find a pair (u, 4'), 
u E H '(Q), 4, E L2(0W), such that 

2 aU aV 
- - a a dx + v42dx + u4 ds 

(1.2) i=1 axi axi a a 

=fv dx +f g4 ds for all (v, 4) E H 1(g) X L2(aQ). 
52 ~au 

For f, g smooth enough, (1.2) has a unique solution (u, 4 such that u is the weak 

solution of (1.1) and 4, is defined as 

_ au _ au au 
(1.3) - a = -nl aU _ n2 aaU x au), 

(1.3) ~ ~ ~~~~n ax1 -'2 aX2' 

where n(x) = (nl(x), n2(x)) denotes the unit outward normal vector of au at x. 

In the Lagrange multiplier method [2] for approximately solving (1.2) one 

introduces the finite-dimensional subspaces Mh c H '(U) and Nh c L2(a0) and 
defines the approximate solution as the pair (uh, APh) E Mh X Nh which satisfies 

a iEl ax axidx + laaChds + uh 
dsf 

(1.4) f2--1 x ~hSfhd 

= fv dx + g ds for all (v, ) EMh x N. 
52 ~as 
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Finite element methods based on (1.4) have the benefit that they do not require the 
fulfillment of the Dirichlet boundary condition in the subspaces. The stability and 
convergence of such approximations was studied first in [21 (see also [3]). For an 
abstract Lagrange multiplier method, necessary and sufficient conditions for stabil- 
ity are given in [6]. 

The actual verification of stability and the construction of the subspaces was 
considered by the author in [9] for quasi-uniform finite element meshes and in [10] 
in a more general situation. In [10] a number of local conditions were stated that 
yield the uniform stability of the Lagrange multiplier method in weighted norms 
depending on the finite element partitioning of the boundary. 

In the present paper we proceed from the ideas of [10] and [4]. We consider the 
situation where graded meshes are used to handle the singularities arising from the 
corners of ag. Assuming mesh refinements of the same type as those considered in 
[4] for polygonal domains, we construct finite element subspaces that meet with the 
stability conditions of [10]. We then derive error estimates for the resulting 
approximations in weighted Sobolev spaces. 

The plan of the paper is as follows. In Section 2 we state the basic assumptions 
and give some properties of weighted Sobolev spaces that are needed in the paper. 
In Section 3 the stability conditions are restated from [10]. A family of finite 
element subspaces is introduced in Section 4 and the validity of the stability 
conditions is verified. Finally, in Section 5, the approximability properties of the 
subspaces in weighted Sobolev spaces are studied, and a weighted convergence 
result is derived for the approximate solution. 

2. Preliminaries. We consider a bounded, simply connected domain Q C R2 
whose boundary ag consists of a finite number of smooth closed arcs F,, i= 
1, ... , I, defined in terms of the smooth mappings J, = (Ji,, J,,2) such that 

2.1) ri = {(JQ1(t), Ji,2(t)), t E [0, 1] }, 
(2.1)[Ji'(t)]2 + [J'1,2(t)]2 > C > 0, t E [0, 1]. 

We will denote the corners, i.e., the endpoints of the arcs Fp by Zj, i = 1, . J. , I, 
numbered in any order. The asymptotic opening angles of the corners into the 
interior of Q are denoted by w,. We assume that 0 < wi < 21T, i = 1, ..., I, i.e., we 
exclude needles but include slits. 

For u(x) defined on t1, let Dku denote the field of all partial derivatives of u of 
order k. Then the Sobolev space Hm(9), m > 0, is defined as usual, with the norm 

m 

11IUIIkm(u) kE: | I Dku I dx. 
kO u 

In what follows, we use the notation 
I 

(2.2) s(P x) x L Ixz,| A E 1=,***, 
- 

RI, 
i=lI 

and 0 = (1, 1, . . ., 1) E R'. For 8 e R Iand m > 0 given, we let Wm'"(Q) denote 
the weighted Sobolev space of functions u, defined on 02, such that 

m 

||U|| m"..((_)_ =' E t5B(- MIA DkU1 dX < OC) 



FINITE ELEMENT METHOD FOR DOMAINS WITH CORNERS 15 

We state below some inequalities to be needed later on. 

LEMMA 2.1. If 3 E R' is such that 0 < /,6 < 1, i= 1,.. .,I, and u E H1(0), 
then 

f rp2u2 dx < CII UIIHI(), 

where C depends on /8 and U. 

Proof. Let Xi,,6 be a smooth function defined on Q such that xi,,(x) =1 for 
Ix - zil <3 and xi,,(x) 0 for Ix - zil > 28. Then, if 8 is sufficiently small, a 
modification of Hardy's inequality gives (see [8]): 

Lx -ZIa(Xi,8U) dx < C Ix - ZiIa+2ID I(X iU)I2 dx, a > -2. 

Taking a = -2A39, summing over i and using the triangle inequality, the assertion 
follows after a simple computation. LO 

LEMMA 2.2. If A E RI is such that A/ < 1 for some i E {1, ... , I), then any 
u E= W2(i() satisfies 

Iu(x)l < CIIUIIW2,(Q)' x - zjI > 3 > 0, #7 i, 

where C depends on Q and 3. Moreover, u(zi) = 0. 

Proof. See [4]. This result is also implicit in [8]. 
Consider next functions defined on M. We say 41 E Hm(ai), m > 0, if 

I 

2I4'IIHm(as) = 2 llill2H_(O,1) < o ) 
i=l 

where {i4(t) = 4(J,(t)), t E (0, 1), i = 1, . .. , I. Similarly, 4' E Hm+1/2(aR), m > 0, 
if 

114/1m+1/2(a I) E 4/i 2m(ou) + 14/)1,2m ) 1 2, 

i=l2 

where 

(2.3) 1/2 jil [ ( - ] dt dt'. 
oo (t-t'2 

We note that Hm+ 1/2(aU) can be defined equivalently as the interpolation space [5] 

Hm+ 1/2(aQ) = [ Hm(a), Hm+ l(aQ) ] 1/2,2 

To define weighted Sobolev spaces for functions on M, let v = v(i) and ,u = ,u(i) 
be integers such that 

(2.4) Ji(0) = ZIJ Ji(l) = z,. 

With /3 E RI and m > 0, we define Wm fi(Q) as the space of functions 4, such that 
I 

II4'IIv"m,(as2) = 2 IlXlm,, K ?? 
i=lI 

-where 

11pIkI2lm ai = E f [ta - +( - t),Pmm+j]2lkj)(t)l2 dt. j=O 0i 
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Further, we let Wm + 1/2? (aQ) denote the space with the norm 
I 

(2.5) 1f4H W2 +l/2,(a8) = W14'2m,fl-0/2(an) + 1 1t'(1 - t)^44m)I/2, 

where I * 11/2 is defined by (2.3). The following interpolation result is obtained from 
[1 1]. 

LEMMA 2.3. If m > O and,8 = 2(/81 + 32), then 

Wm + l/2,ft(m) = [ wm"0^(aQ), wm + l,02(aQ)] 1/2,2T 

In Section 5 we need the following trace inequality: 

LEMMA 2.4. If u E Wm(l2), m > 1, then 

I I Ula gI Wm 
- 

1t/2,fl(aa) < C I I u ,( ) 

Proof. In [8] it is proven that if u E W"-8(Q), then 

(2.6) 1 U1aUI o 
W-e/2(aa) 

< CI1uII w1P(Q). 

From this it is easily concluded that, if u E Wm.P(Q), m > 1, then 

(2.7) 11u1a11Wm Wm-1,-i/2(aO2) < C1u W'"P(a). 

Now let Dm_ u be any partial derivative of u of order m - 1, and let %i(t)= 

(Dm-I u)(Ji(t)), i = 1, ... , I. Then 

(2.8) E t6(1-t)#,41,i|2 < CIIqpDm_lUIaOII2I/2(aQ). 

Using the trace properties of Sobolev spaces Hm(2) (cf. [1]) the right side can here 
be further estimated as 

(2.9) | | ,Dm-1 UjaQ11 |H 12(aQ2) < C | T FDm-1 u | H1(O)- 

The asserted inequality now follows by comparing (2.5) with (2.7) through (2.9) and 
noting that 

IkPfiDm- lulIHi(a) < Clull w-Pfi(y) O 

We state finally a regularity result for the solution of problem (1.1). For the proof, 
see [8]. 

THEOREM 2. 1. Let m > 2 and let /3 E R I be such that 83 > 0, m -1 > 13 > m - 

1 - T i i = 1, .. ., I. Further, let f and g in (1.1) be such that f = fi + f2, 
f1 I Hm-2(7),f2 E Wm-2l(Q), andg = g- + g2, g1 E Hm(Q), g2 E Wm,8(2). Then 
problem (1.1) has in H'1() a unique weak solution u which satisfies u = u1 + U2, 

u1 E Hm(Q), U2 E Wm'2(0), 

IU1 II Hm(O) + IIU211 Wmf(O) 

< C{IIflif| Hm-2(5Q) 
+ Jjf2IIW--2zP(Q) + 11igII1Hm(U) + 11g211wm,P(5)} 

3. The Local Stability Conditions. In this section we state a number of conditions 
that are sufficient for the uniform stability of the Lagrange multiplier method. 
These were stated already in [101, but as they will be referred to in the sequel, we 
repeat then here for convenience. 

Suppose we are given a partitioning h(aQ) of aQ, consisting of connected 
smooth arcs, a finite-dimensional subspace Nh c L2( l) associated to rhQaS2) in 
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the manner described below, and another finite-dimensional space Mh C H 1(gj). If 
S c R', we let d(S) denote the diameter of S, and we let K, A, and L be some 
fixed positive parameters, with L an integer. Further, we associate to each pair 
{Si, Sj} c Th(aQ) a number ni1, defined as the minimum number of subsets S E 
Th(ag) that have to be crossed when passing from a point in S, to a point of Si 
along au. 

In the above notation, the sufficient stability conditions are as follows: 
Al. To the partitioning Th(a5) = { S1, . . ., S.} there corresponds a collection 

{C91,.). C,} of discs eC c R2, such that, for each j, the center of C1 is in Sj, 
d(Cj) > 8Kd(S:), and, for each C, E { C,}, C n eC #/ 0 for at most L spheres 

A2. For all pairs { Si, Sj} c Th(aQ), 

d(i) < K(1 + n,,)A 
d(S:,) 

A3. For each Sj E Th(a2), there exists Oj E Nh such that supp{ j} D Sj, 
d(supp{4>})) < Kd(Sj), and 

2 

|| j ds| > K-ld(Sj)t O$> ds. 

A4. There exists a basis {4', ... , 4'zj of Nh and a set {v1,.. , vl,} c Mh such 
that 

(i) For all i, 1 < i < ,u, if supp{4} n Sj #/ 0 and supp{f4 n Sk 0, s), Sk E 

Th(Qo), then njk < L. 
(ii) For all i, 1 < i < ,u, v,vj 5 0 for at most L functions vj, 1 < j <,. 
(iii) If Sj E Th(ao) then 

Aj = { i; {i ! O on Sj} = {vi; vi O on S}. 

(iv) If Sj E T7h(M) and vi m 0 on Sj, then 

K-ld(Sj) I D Vi 12 dx < II ViI24(s1) Z K, {I I i2 S1)2 

(v) If 41 = 8' 14j',, v = 8: f3vi, fBi E R 1, Sj E Th(aQ), and Aj is as in (iii), then 

K i2 f12IIIL(s) II'PIK2( > K 1 
2 > 

fi2IIiP 112 
i cAj iE Aj 

K : f8i2 11Vi 12 2 
IIVI12I~(. > K-1 2 f32 1 i v 12 K fiAi ltilL2(Sj)> IIIL2(Sj) > iii||2 (Sj), 

ieAj iEAj 

and 

I AV + > 
K-1IIAIIL2(Si). 

We state below a consequence of the above assumptions, which will be of basic 
importance in what follows. First, let us define on [H 1(e) x L2(a0)]2 a bilinear 
form 1i? as 
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so that (1.4) can be rewritten as 

u," (u h; 
h, 

) =fv dx + go ds, (v,4) EMh X N'. 

Further, let us introduce on H 1(Q) x L2(ag) the weighted norm 

j(u, 4)112h = ffD 1uf2 dx + 2 d(Sj)-l U2 ds + d(Sj)f 2 ds, 
u i Sy i Si 

where the sums are over all Sj E Th(aQ). Then we have, by slightly modifying the 
stability result of [101, 

THEOREM 3.1. Let Tr(ag), Mh, and Nh be such that the assumptions Al through A4 
are satisfied for some finite K, A, and L. Then, if d(S) < ho for all S E Th(au), 

where ho = hO(Q2) E (0, 1), we have 

inf sup 'S6 (u,4'p;V, 4i) > >01 
(u,4)E MhXNh (v,4)EEMhXN" I(u 4)II hI(V )II > C > 0, 

where C depends on y, K, A, and L. 

4. The Finite Element Subspaces. We will now introduce partitionings and 
subspaces, which meet with the assumptions of Section 3. First, a family of 
triangulations of l is introduced. To this end, let /3 E RI be given so that 
Of< Il,i= 1,...,I,andassumethatforeachh,0<h< l,wearegivena 
collection Th(Q) of open, disjoint subsets of 02, such that U T T = Q and so 
that each T EE h(U) is either a triangle or a triangle with one or two curvedsides 
on au. We will further assume that for some positive constant , the following 
conditions hold for all h E (0, 1). 

B. (i) Each T E T,6(92) contains a sphere of radius p > ed(T). 

(ii) If T E Tl (R2) and zi i4 T,9 i9 =,... I, then 

ehmax q,(x) < d(T) < e-'hmin li (x). 
xE T xeT 

(iii) If T E Th(2) and z1 E T, then 

ehmax )p1(x) < d(T) < e-'hmax Tp(x). 
xET xeT 

Here Pp refers to (2.1). 
For a polygonal domain, triangulations of the above type were discussed 

previously in [4]. We cite from [41 that the number of triangles in a triangulation 
,h(Q) is bounded by Ch-2, where C depends on l and e, and /3. We also point out 
the following implication of B(iii): 

(4.1) T E Tlh()&z1 E Tzi d(T) < Ch /O 

To each Ti^(Q) we associate the finite element spaces Mh k -1, 2, ... . defied 
and T -= 1hQ, 2,..hdfie as subspaces of H 1(Q) such that if u E M,lk and T E r,l), then uT is a 

polynomial of degree at most k. 
We let TB(ag) denote the boundary partitioning induced by h'(02), i.e., T,h(ag) 

consists of the sides on ai of the triangles in T,,h(g). We associate to Th*(a82) the 
subspaces N,6k c L2(aM), k = 1, 2 .... First, assuming the notation 
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where Ji is as in (2.1) and 

(4.3) Iij=(J'ti; 0 = to < ti < ... < t1s 1 

let No 1 < i < I, denote the maximal subspace of C0[O, 1] such that if E C 

Nh then (i) if k = 1, then 4l is a constant for j= 1 and j= mi and a 
polynomial of degree unity for < i < mi - 1; (ii) if k > 2, then 4)I is a 
polynomial of degree k - 1 for 1 < j < mi. Then define 

=,k E{ 
- 

L2(0); +(t) = Q(Ji(t)) E N1,, i = 1,.. , I}. 
In order to verify the assumptions Al through A4 for the above subspaces and 

partitionings, set Mh = Mh, Nh = NAk, and T h(a) = {aT n aQ, T E h(Q), T 
has at least one side on ag). First, we easily conclude from B(ii) that, if S E T (au) 
and e c R2 is any disc of radius p < Kd(S) containing S, then the number of the 
sets Sj E Th(a2) that intersect C, is bounded by CK, where, if h is small enough 
(depending on 2), C depends only on f8 and e. In view of this, there exists for any 
given /3, e, K, a finite L such that Al is satisfied for all h E (0, ho), ho = ho(2) e 
(0, 1). 

The verification of A2 is also easy: using B(ii) and (iii), a simple calculation 
shows that A2 is satisfied\ if K is large enough (depending on f3, e) and 

A= max A 
i=1., I1-fA' 

To verify A3, let S E Th(aQ) be given and let S1 E Th(a ) be a subset adjacent to 
S on ag. Then there exists a nonnegative function 4 Ee Nh such that supp{4} 

cS, u S. By a scaling argument, we have the inequality ifr a) dsj2 > 

Cd(S)f fa 2 ds, where C > 0 depends on k and on the constant K in A2. Hence, 
A3 is satisfied. 

We come finally to the assumption A4. 

LEMMA 4.1. Let /3 E RI be such that 0 A f3i < 1, i = 1,... , I. Then there exist 
finite K and L depending on e and ,B such that Mh = Mhk and Nh = N hk satisfy A4 
for all h E (0, ho), ho = ho(Q) E (0, 1). 

Proof. We define first a linear mapping U: Nh Mh. To this end, let 4, E Nh be 
given and let us associate to each T E Th1(s) a polynomialpT = pT(O) (on R 2) such 
that 

(4.4) (U4')(x) = PT(X), X E T E Fr;s(l= 

We now define the polynomials PT. First, consider a triangle T E hB(2) which has 
a side S on MQ. We choose a cartesian coordinate system {xl, x2} so that S has the 
parametrization 

(4.5) S = {(xI, x2); x2 = F(xI), xI E (0, d)} 

where F is a smooth function satisfying 

(4.6) F(O) = F(d) = 0, jF(xI)I + dIF'(xI)j < Cd2, xl E (0, d), 

with C independent of S. Now if S does not touch a corner of agi, we require that 

PT = pTx1, x2) satisfies 

PT(id/k, 0) = VP(id/k, F(id/k)), i = O,... , k. 
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In the remaining cases, i.e., one endpoint of S is a corner of au, we choose the 
coordinates in (4.5) so that the corner is at (0, 0), and set 

PT(O 0) = 0, PT(id/k, 0) = (i/k)14,(id/k, F(id/k)), i = 1, .. , k. 

Consider now an arbitrary T e r(1). Recall (cf. [71) that any polynomial of 
degree < k on R2 is defined uniquely by its values on a set aT given by 

{ 1 3 3 

aT= viai;PiG{O,l,..I,k},X 1i=k 
t i=1 i- 1 

where ai are the vertices of T. Now, if T has a side on aQ and if x E 0T is located 
on the line joining the two vertices of T on M2, then we define PT(X) as above. At 
the remaining points x EE T we set pT(x) = 0. Then each PT iS uniquely defined. 
Moreover, it is easy to see that the mapping U defined by (4.4) is linear and into 
Mh. 

We establish next some inequalities for the mapping U. Let 4' E Nh be given, let 
T EX (Q) have a side S on K2, parametrized as in (4.5)-(4.6), and let +(x) = A(x), 
x E S, if S does not touch a corner of Q, or 4+(x) = :(xl, x2) = (x1/d)*(xl, x2), 
x E S, if (0, 0) is a corner of U. 

Let us first note that, by (4.6), 

d[ Uxp(x1, 0) - U4,(x1, F(xi))]2 dx 

(4.7) = ffF(x 1) a d2] 

=ax U4,(x1, x2) dX2 dxI < Cd2JIVUl,12 dx. 

Also, since U4,(xl, 0) is the Lagrange interpolant of 4(xl, F(x1)), 

[ U4(X1, 0) -_ (X1, F(xl))]2 dx 

(4.8) < Cd2k+2 d[(x )+(Xl, F(xl))j dxl < Cld2f 42ds. 

Here the last inequality follows from an inverse inequality for the space Nh. (Recall 
that 4, comes from a polynomial of degree < k - 1 if S touches a corner of Q, and 
from a polynomial of degree < k otherwise.) 

Using (4.7) and (4.8) we obtain 

fU4 X- )4,d = fd[(UA , - p)4,](xj, F(xl)) ds dx1 
fd[~~~~~~~~d 

=|1 [UA(x ,F(x1))- U4,(x , 0)] 4(x1, F(x ))- dx 

+fd[ U4p(xl, 0) - +(x1, F(x1))](x1, F(xl)) ds dx 

< Cd {V UO 2dx {f42 d}s + Cdf,2dS. 

On the other hand, by the equivalence of norms in a finite-dimensional space, we 
have 

f 4,kd > Cf 42 S S S~~~~~~~~, 
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for d sufficiently small. Combining the last two inequalities we obtain, for d small 
enough, 

f(U4P)4Pds > Cf t22dS - CId2f IVU4PI2 dx. 

Now, if S is the only side of T on M, then B(i) and (4.8) imply that 

d(T)f IV 
UU412 

dx d Cf [ Ut(x1, 0)]2 dx1 SClf 42 d 

where C1 depends on k and e. More generally, if T E h-(i2) is a triangle that 
touches M, we conclude from a similar argument that 

d(T)fIVU412ddX < C (U/)2ds d Clf4,2, d T) S S l4/ 

where S = aT n aQ if T has one or two sides on a, and otherwise S = S1 u S2. 
where Si E Th(aQ) are such that SI n S2 is a vertex of T. Combining these 
inequalities, we see that 

(4.9) Uxp) iPds > (C - CIh)f ?4ds > C2c f2ds, 

h small enough, S = aT n aQ E rh(aQ)9, 1 E Nh. 

Also, since U4IT = 0 if T does not touch M, we obtain 

jIVU4/2dxC E d(S)lf(Ulp)2 d. 
(4.10) s&T(a) 

< C1 I E d(S)-' Xp2 d. 

S ET(80) 

Using (4.9) and (4.10), it is now easy to complete the proof of Lemma 4.1. First, 
introduce a basis { 4A>} of Nh such that A4(i) is satisfied for some finite L. Such a 
basis is easily formed from locally supported functions. We then define the set 
{vj) c Mh so that Vj = U4,, where U is the linear mapping constructed above. The 
validity of A4(ii) is then clear, and the inequalities in A4(iv) and (v) are easily 
proved using scaling arguments and (4.9) and (4.10). C1 

We conclude this section by stating a convergence result for the Lagrange 
multiplier method (1.4) when Mh = Mk Nh = Nhk. We need the following result. 

LEMMA 4.2. Let r1(au) = {sl ... , S,} and let r > -2. Then if h E (0, h0), 
ho=( )E(,0 1), and 4peNAk or 1 CMh <S <1, i = 1,..., I, there 
exist the positive constants C1 and C2 depending on k, e and r/3 such that 

C12rf 2rXP2 dS <j: d(,2rf p~~Chrq42s Clh la + d <f d(Sj) Is 2 ds h 2r 2rp 24ds. 

Proof. If Sj does not contain any of the corners of aQ, then B(i) and B(ii) imply 
that, if h is small enough and 41 E L2(aQ), then 

(4.11) Clhf < d(si)2r f 42 dS <2 



22 JUHANI PITKARANTA 

where Cl and C2 depend on e. Assume then that zi E 1 < i < I. Using the fact 
that 

Clf tap2 dt < f p2 dt < C2f' tap2 dt 

for a > -1 and for any polynomial p of degree k, with C1 and C2 depending on a 
and k, we conclude by scaling that if , E N,Tk or 4, E Mhkja2 and h is sufficiently 
small, then 

Cld(S%a)f x-Z la4,2 ds 

< 
f 42 C2d(Sj)a | -Zijl2 ds, a > -1. 

Choosing a = 2r,8i and noting that, by B(i) and (4.1), 

Clh2 S, d(Sj)2rli < C2 hr 

we again obtain (4.1 1), with C1 and C2 now depending on e, r,8i and k. 
Since (4.11) holds for all Sj E TI,(M), the assertion follows by sum g over 

j.El 
We note that, by Lemma 2.4 and Lemma 2.1, we have the inequality 

I m12 adS CIIUI12H.u u E- H'(9)- 

In view of this, if we define 

II(u, lp)11,2 = f ID 1u12 dx + ir' | -u2 d + hf a2 d 

then II * i,h is a norm in the space H '(S) x W,0Q/2(ag2). We denote the normed 
space (H '() x WQ/ 12(aga), || 11,0|h) by Xfih. 

Let the bilinear form 1 be as in (3.1). We replace from here on the weak 
formulation (1.2) by the following more convenient variational problem: 

(4.12) (u, 4,) E Xfl,h: ' (u, 4,; v, 4) = ffv dx + f go ds, (v, 4)) E X,h. 

In the sequel it is of importance that (4.12) is solvable under weaker assumptions 
on f and g than (1.2). From (3.1) one concludes immediately that the bilinear form 
1 is bounded on X,x,h X ,h: 

(4.13) P|B(U, XP; vI 01| < |(ul 01,,h A) l(VI f)l,h,* 

Moreover, by Theorem 3.1 and Lemma 4.2, 

(4.14) inf sup , E(u, 4A l , >v,>) l) 

From (1.4) and (4.12) through (4.14) we conclude, by classical arguments (see [3]), 
the following result: 

THEOREM 4.1. Assume that problem (4.11) has a solution (u, 4,) E H l(Q) x 
w0O,/2(aa) O A /3 < 1, i = 1, . .. , I. Then, if (uh, Aph) is the solution of (1.4) with 

Mh = M,hk, Nhk = NIk, h E (0, ho), ho = ho(Q) E (0, 1), we have the error estimate 

II(U, 4) - (Uh, XPh)IIp6,h < C mi lI(U, 4, - 
(VI 4))1 1i,h' 

(v,h)MPipk X 
Nfknk 

whrif epnso i,kadc 
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5. Rate of Convergence. We state first some lemmas which pertain to the 
approximation properties of polynomials in weighted Sobolev spaces. In what 
follows, T denotes a triangle with vertices at (0, 0), (1, 0) and (0, 1). 

Our first lemma is from [4]. 

LEMMA 5.1. Let a # 0 and let u be defined on T such that JTIXIaID 'u12 dx < oo. 
Then there exists a constant q, depending on u and a, and a constant C > 0, 
depending on a, such that 

(5.1) fxa'2u - ql2 dx < Cf xalIUDlU12 dx. 

LEMMA 5.2. Let k be an integer, k > 1, a E R ', a M {O, 2,..., 2k-2}, and let 
ube defined on Tsuch that JTIXIalDku2 dx<o.Then there exists a polynomial p of 

degree k - 1 and a constant C, depending on a, k, such that 
k-I 

(5.2) ElfXIa+2j-2klDi(U -p)2dx d< Cf xlalDkuI2 dx. 
j=o 

Proof. We first apply Lemma 5.1 to find constants qij, i + j = k - 1, such that 

fTIxI a2( :;a - qij dx < Cf IxIaID u2 dx. 

Then define 

pk- 1(x) = 
! 2 

i+j=k-1 i!J* 

Let Uk-I = u - Pk and apply again Lemma 5.1 to find constants qij, i +j = 

k - 2, such that 

/k-2 2 

fIxIa4 a k- I 
- q) dx < Cf Xla21Dk lukk1 dx. 

Further, define Uk -2 = Uk - -Pk -2, where 

qij 

Pk-2 = j XX2 
i+j=k-2 

Continuing in this way, one finally finds the homogeneous polynomials pj of degree 
j, 0 < j < k- 1, such that if uj = u-E_ 'p for 0 < j k- 1, and uk = u, 
then 

|IXja+2j-2kjDjuj2 dx 

CflIxla+2j+2-2kiD'J+lUj+ 112 dx, j = .. ., k - 1. 

Noting that DJuj = DJuo, the assertion follows by taking p = j Pj. El 
Let >k denote the set of nodal points on T associated to a reference Lagrange 

element of degree k, k > 1 (cf. [7]). For a continuous function u, defined on T, we 
let (u)k denote the kth order Lagrange interpolant to u, i.e., (U)k is a polynomial of 
degree k such that (u)k(x) = u(x) for x E Sk. We have 

LEMMA 5.3. Let k > 2, let 2k - 4 < a < 2k - 2, and let u be defined on T such 
that fTIxa 7Dk dx 2 oo. Then (5.2) holds for a polynomial p = (U)k. 
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Proof. Letp be the polynomial of Lemma 5.2. Then we have 

(5.3) (U)k = (U -P)k +P. 

From Lemma 2.2 and from (5.2), we have 

(u - p)(X)12 < Cf xIaID kU2 dx, x E T, 
(5.4)T 

(u - p)(O) = 0. 

Then also (u - P)k(O) = 0, so we have 
k-I 

i _Ixa+212k ID(u - p)kI dx < so, a > 2k - 4. 
1=0T 

Further, by the definition of the interpolant and by (5.4), 
k-I 

E i 

fXia+212k|Dl(u 

- p) 
k12 dx 1-0T 

(5.5) 
< C E I(U- p)(X)12 < Cl lxla ID kU12 dx. 

X ETk 

The assertion now follows by combining (5.3), (5.5), and (5.2) and using the 
triangle inequality. C1 

Using the above results we now prove the first approximation theorem. 

THEOREM 5.1. Let k > 1, and let f E RI be such that O < 83 < 1, i = 1,. ..,I. 
Further, let u be defined on Q such that Jf q,kIDk+lU12 dx < m. Then, if h E (0, h0), 
ho= ho() E (0, 1), there exists a constant C, depending on k, /, e, such that 

min (ID1(u -V)d+ h-1I YBl-V2 
uEMfk{T I) 

(Ch2kf p2kI Dk+lU2 dx. 

Proof. We begin by introducing an interpolant of u. Let T be the reference 
triangle as above. Then, if Tj E h(0), we can write 

(5.6) T = (Gj o Aj)(Tj), Tj hEr(2), 

where A. is an affine transformation which maps the corners of Tj onto those of T, 
and Gj is a smooth transformation which straightens the curved sides (if any) of 
Aj (T)). If 7) contains a corner z, of aQ, then we assume Aj to be chosen so that 
A (zi)= {0). 

With the nodal set Yk defined as above, let zjk = (Gj o Aj)-'(7k), and define uj as 
the polynomial of degree k on Tj such that u'(x) = u(x) for x E Xlk. Since the sides 
of the triangles Tj E Th(Q) become straight in the limit h -O 0, we see that, if h is 
sufficiently small, then u' is uniquely defined for all Tj E Tr(i). We let U, k E M,Bk 

denote the interpolant defined as 

U k(x) = u'(x), X E Tj E h(Q). 

We will first prove that, under the assumptions made, 

(5.7) JID'(U - Uhk)I2 dx < Ch2kf 2kDk+lui2 dx 
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Let Tj E T,(Q) be a triangle which does not touch any of the corners of au. Then 
we have the classical result 

ftD'(u - i')12 dx S Cd(Tj)2kfiDk+lU12dX, 

where C depends only on k and e for h sufficiently small. Using B(ii), this can be 
further written as 

(5.8) fID'(u - ) dx Ch2kf dkIDk+luI2 dX. 

We show next that (5.8) also holds when T1 contains a corner zi of M. We note first 
that Lemma 5.1 holds also when T is replaced by Aj(Tj), Aj as in (5.6), provided 
that h is small enough. Moreover, the constant C in (5.1) does not depend on j. 
This follows, since Aj(Tj) = G-'(T), and the Jacobian of Gj-1 tends to unity 
uniformly in j as h ->0. Then Lemma 5.2 holds also when T is replaced by Aj(Tj), 
and so does Lemma 5.3, if >k is replaced by GT'(2k) in the definition of the 
interpolant (u)k. 

Now choose any a E R 1 so that 2k-2 < a < 2k, a > 2kJ. Then, using the 
above modifications in Lemma 5.3, we conclude that, if iu(x) = u(Ai '(x)), f2-(x) = 

uj(Aj-'(x)), x E Aj( Tj), then 

f IXa -2kIDl(a-i_'j)12dx < Cf ixialDk+Ia2 dx. 
A( Tf) (Ti T) 

This inequality is invariant in scaling. Therefore, and taking into account the 
assumption B(i), the affine transformation A)-- can only introduce a dependence on 
e in the constant C. Thus, we have 

(5.9) X _- zia-2kIDl(u -U)12 dx < C jx - z,lajDk+1ui2 dx, 
Tj Tj 

where C depends on k, a, c. Using (4.1), we have here the further estimates 

JX _ 
zi a-2k > Ch(a-2k)/(1-A), 

ix - Z |a < C[Eml(x)]2kh(a-2kl,)/(1A), x E Tj, C > 0. 

Together with (5.9), these prove (5.8). 
Having verified that (5.8) holds for all Tj E ,h(Q), it suffices to sum over j to 

prove (5.7). 
We prove next the estimate 

(5.10) h'f | jlu - hjk2 ds < C<h 2kf ckIDk+ uI2 dx. 

Let Tj E T-h(Q) be a triangle such that Tj has a curved side Sj on au, and let ui and 
zj be defined on Aj(Tj) = Gj-'(T) as above. Assume first that Sj does not touch any 
of the corners of aQ. Then we start from the inequality 

j~ 4j2~s CIi2 U~IHI(A(Tj)) <C,f IDk+zi2 x 
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where C1 depends only on k and e for h sufficiently small. Applying to this the 
affine transformation Aj-', one gets 

d(Y'flu U - uj'2 ds < Cd(T )2kf IDk+lu12 dx, 

and further, using B(ii), 

(5.11) h-1f - U_ u-uj12 ds < Ch2k f ,ak ID k+ 
lUi2 dx. 

J J I 

If z, e Si, we take a e (2k - 2, 2k), a > 2kA,, and derive first from (2.6) the 
inequality 

A(Sj) 

< c {lXia-2k2It -r4j12 + IXIa-2ktD l(i -I)J2) dx. 
A( T,) 

Applying on the right side the same reasoning as above and performing the affine 
transformation Aj-1, we conclude that 

ix - z ja-2k-1U - uj12 ds < Cf x - ZilaIDk+lU12 dx. 
Sj T 

Since, by (4.1), 

IX - Zja-2k-1 > Ch(a-2k- +'8)/(' )[qs(x)]'x 

IX Zil < Ch( q9() x I 2 

2k,8i < a < 2k, x E Sj, C > 0, 

we again obtain the estimate (5.1 1). 
Upon summing overj in (5.11), the estimate (5.10) follows. Finally, combining 

(5.7) and (5.10), the proof of Theorem 5.1 is complete. [L 
The second approximation theorem is as follows. 

THEOREM 5.2. Let k > 1, and let 83 E R' be such that 0 < f3i < 1, i = 1, ..., I. 
Then, if U E Wk+ l,kfi(0) and 4, is defined by (1.3), there exists a constant C, 
depending on k, /3, c and Q, such that 

min ( hk{ d P | )2 - 4 12 ds} < Ch2k U 1uI1 2k+'k) 
'A C NOsk a 

Proof. Consider first a function 4, defined on ag and sufficiently smooth on each 
F, i=1, ... ., I. We use the notation of (4.2) and (4.3) to define an interpolant of 
4, in N,k. First, let 4i,(t) = 41(Ji(t)), t E (0, 1), i = 1, . .. , I, and let 'Pik denote the 
interpolant of 4i, in the partitioning {I1(i)}L', defined so that (i) if 2 < j < mi - 1, 
then 'Pi,klI, equals the Lagrange interpolant of 4', of degree max{ 1, k - 1) on IJ', and 
(ii) if j = 1 or j = i, then 4i,kjI is defined as a polynomial of degree k - 1 such 
that 

(5.12) (4,(l) - 4(2)(tl - 0) = 0, (5.12) (z- '2)(t,-,_+o)=O O, l= ,... ,k- 1. 
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We let 4,Bk be a function defined on ai such that 

4,k(X) = 4i,k(J,(X)) x E ri, i = 1, ... , I. 
It is clear from the definition of N0k that hk E Nhk.We will establish first the 
interpolation error estimates 

h hkpI4 - wh1kI d ( Ch2k+ l Ij jk,(k + I/2)(O(ag), 
(5.13) 

lp E Wk,(k+I/2)ft(aQ), k = 1, 2, .... 

To prove (5.13), let ' = z(i) and , = ,u(i) be as in (2.4). Then B(ii) implies the 
inequalities 

Cjtf(l-(1-t)", 6 dQj>) < C2tfl(1 - 4), t e I.',j = 2, ... ., mi - 

where C1 and C2 depend only on c. Combining these with the classical estimates of 
the error of Lagrange interpolation we get 

hftf(1 - ( t)I4'P - 41i,kI 2 dt 

(5.14) <chkIWUI)I pk1 
(5.14) Ch2k+f t(2k+1)#l(1 - t)(2k+l)flI44k)I2 dt, j = 2, . .. , mi - 1. 

IJ 

Let us now show that (5.14) also holds forj = 1 andj = m,. We need the following 
consequence of Hardy's inequality [8]: Let a > 0, k > 0, and let f be defined on 
(0, 1) so that fI ta+2kIf(k)12 dt < 0, and so that f(l)(1) = 0, / = 0, ... k - 1. 

Then 

(5.15) ft of2 dt < Cf ta+2kIfIk)12 dt, 

where C depends only on k. 
Since (5.15) is invariant in scaling, we conclude from (5.12) and (5.15) that 

f t'(l - t)04i - 4i,k2 dt 

(5.16) 
< Cf tfl+2k(l - t)&.+2kI44(k)j2 dt, j E {1, i,. 

J 

On the other hand, B(iii) implies that 

t < Chll('-#,) t E- P1 

and 

I1-t < Chl/(0- -8 t E- I'. 

Using these estimates in (5.16), it follows that (5.14) holds also for j = 1 and 
j = mi. It then suffices to sum over i andj to prove (5.13). 

In view of (5.13), the following estimates hold: 

minh fhf 91p -_ 12 d4 
4ENPk aQ 

< Ch2k+ 1llljj 2k(k+l/2)f(ag) 4 e Wk,(k+ 1/2)i(a2) 

< Ch2k- IIIIj 2 k-,(k - 1/2)(a) p E Wk-1(k 
- 1/2) ,2. 

k = 1,25,.... 
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Here the second estimate is trivial if k = 1, and for k > 1 it follows from (5.13) 
and from the inclusionN,B k-1 C NABk. Upon interpolating between these estimates 
and using Lemma 2.3, we have 

min fhf 9j,B1-)I ds) 
(5.17) mEN h aQ 

< Ch2"114'II Wk-1/2Ak(a2), a E W-12k(aQ), k = 1, 2. 

To complete the proof, take 4, in (5.17) to be defined by (1.3), with u E 

Wk+ l,kf(). Since ni in (1.3) are smooth functions on each arc Fi, i = 1, . .. , I, 
and since the operator of multiplication by a smooth function is bounded in the 
weighted Sobolev spaces considered, we conclude from Lemma 2.4 that 4P satisfies 

11 lpIIWk 
- 

/2.kf(aQ) < C I|| u|| Wk + 1kf(Q). 

Upon combining this with (5.17), the proof is complete. [1 
Using the above approximation results, we can now estimate the error of the 

Lagrange multiplier method in terms of weighted norms. 

THEOREM 5.3. Let A E RI be such that 8i > 0, 1 > A > 1- swik, i= 
1, . .. , I. Further, let u be the solution of problem (1.1) with f = fi + f2, f1 E 

Hk l(), f2 E Wk kI(Q) and g = g, + g2, g, E Hk+I (), g2 E Wk+ + 1k(), and 
let 4, be defined by (1.3). Then, if h E (0, ho), ho = ho(Q) E (0, 1), and Mh = Mh^k, 

Nh = Npk, (1.4) has a unique solution (uh, 4,h), and there exists a constant C, 
depending on k, /3, e and Q, such that 

2 
U2_U- uhl 2dX + h2f ID'(u - Uh)12dX 

Q~~~~ 
+ 2h q'uf- u2 2 ds + h3|f p2 - 4l2 ds 

h {IIflIIHkk I() + IIf2IIwk-1,kf(g) + H1IHk+1(Q) + 11g21 Wk+1 kf()}. 

Proof. Given k and /3, which satisfy the assumptions of the theorem, we have, by 
Theorem 2. 1, 

U = u1 + U2 u1 E Hk+l(U), U2 E 

(5.18) IIulIIHk+1(Q) + IIu2I Wk+l,kp(S2) 

C { IIflIIHk - (Q2) + 11f211 Wk -1ki() + II g1IIHk+1(u) + || 92II Wk+ 1,ki(2)}. 

Also, by (1.3) and Lemma 2.4 and by the trace properties of functions in Sobolev 
spaces Hm(Q), 4, satisfies 

4, Al4,~ + 4,2, AlI E Hk l/2(a), 4, E Wk-l/2,kfi(au), 

(5.1 Hk-1/2(aS2) + 1121 Wk-1/2,k(aj2) H C{IIulIIkk+1(Q) + 11U211 Wk+1kf(U)}. 

From (5.19) and (2.5), we conclude that 4,2 E WO,kf-(k-l/2w(a0). Since El E 
L2(AM) and 0 < /3i < 1, i = 1, .I. , I, it follows that 4, E W0E/2(aQ). Hence, (u, 4,) 
is the solution of problem (4.1 1), and the error bound of Theorem 4.1 applies to the 
Lagrange multiplier method. 
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By Theorems 5.1 and 5.2, we have 

n3in D'(u- V)j2 dX + h-1f p13 Iu - v12 d 

(5.20) m 
G ( dk 

(Ch2kf ,2kIDk+1uI2 dx, 

and 

(5.21) 4)ENPk {L( 'PfiI4'2 -e l 2 d Ch2k IIu 2II-k+lk* 

Also, using the same type of reasoning as in the proof of Theorem 5.2, one gets 

min (h 9)'a141-_f 1 ds) 
(5.22) Nk 

C min Ih 4l _- 12 ds< Clh2kll4lll2k-k1/2(aJ2). 
'A E- NPk Q 

We finally estimate fJ2 21 -UUh 12 dx using a dualty argument. Consider the 
auxiliary problem 

-_AV =p,2(U - Uh), xEQ, 

V=0, xe , 
the solution of which satisfies [8] 

V E W2,(a); 

(53 IVIIw2() < C|q-2(U - Uh) II W?l() = C{f 21 - UUh2 dx} 

By Lemma 2.4, if we define = -a V/an, x E ag, then 

(5.24) 1Z41w1i2z(aQ&) < C I VI wI2(Q2). 

By (2.5) and (5.24), we have e W 1/20- /2(aQ) s e W0'/2(aQ). Noting also 
that, by Lemma 2.1, 

f qlNU - uh)v dx < Cllu Uh-uhIIH1(S)IIVIIH1(Q), V EH 

we see that the auxiliary problem admits the variational formulation 

(5.25) (V, Z) e H '(Q) x W ' (aQ): 
@(v, +; V, $) = f|q3(u - uh)v dx V(v, 4) E H'(2) x 

where the bilinear form fi5 is defined by (3.1). 
By the same reasoning as above, we get, from (5.24) and (5.25), that 

(5.26) min {II(V- v, - k)II2,} < Ch2f qe2Iu - UhI dx. 
(V,4)) E Mfk X Nfik 

Then, since (1.4), (5.25), and (4.13) imply that 

f 2 U - Uh1 dX = 6(u - Uh, 'P _ h; V- V, -V ) 
(5.27) 

II(U - Uh, 41 - Ph)II0,hII(V - 
- k)III0,h V(V, k) E MIhk X NIhk, 
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we obtain by combining (5.26) and (5.27) the estimate 

(5.28) f 21 |u - Uht2 dx < Ch 2I(U - Uh, 'P - 'Ph)II3h2 

The asserted error bound now follows from the estimates (5.18) through (5.22), 
(5.28), and from Theorem 4.1. a 
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